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ABSTRACT: 
 
The paper presents an automated procedure for surface reconstruction from digital images. This method was developed for close-
range photogrammetric applications, with a particular attention to terrestrial free-form objects that can be modelled with point clouds 
extracted from images. Therefore, the paper is not directly concerned with architectural elements, where objects feature breaklines 
and discontinuities that are preferably modelled with manual measurements. The implemented algorithm (MGCM+) integrates two 
image matching techniques developed in Photogrammetry and Computer Vision in order to obtain metric results in an automated 
way. Different strategies were exploited to successfully combine both strategies, along with several new improvements. Starting from 
a set of images and their orientation parameters a preliminary seed model is extracted by using a patch-based algorithm (PMVS). 
Then, a multi-photo refinement via LSM (MGCM) improves the precision of results and provides a statistical evaluation through a 
variance-covariance matrix. 
 
 

1. INTRODUCTION 

Nowadays there is an intense research activity aimed at 
developing new strategies for object reconstruction from 
images. Several approaches were developed in both 
Photogrammetry and Computer Vision (CV), keeping in mind 
different requisites such as accuracy, completeness, automation, 
reliability, and so on. Furthermore, the typology of the analyzed 
objects is diverse as well. For instance, in Furukawa et al. 
(2010), Frahm et al. (2010) and Strecha et al. (2010) some 
methods for “large scale city modelling” are illustrated, showing 
impressive results. Several thousands of images are 
automatically processed in order to obtain 3D models of vast 
areas containing complex buildings.  
Photogrammetrists could state that these kinds of 
reconstructions are not good for mapping purposes, as results 
are often incomplete and are not accompanied by statistical 
analyses. Typical problems can be (i) modelling of architectural 
objects, where breaklines should be matched in order to obtain 
sharp edges, (ii) use of uncalibrated cameras and images 
downloaded from the Internet, without any consideration about 
network design, (iii) lack of a geodetic network for stability 
control in the case of large blocks, with GCPs used as pseudo-
observations in bundle adjustment. 
Accuracy during image orientation becomes a point of primary 
importance in Photogrammetry. Indeed, a photogrammetric 
bundle adjustment is supposed to ensure the metric quality of 
the final result. This is partially in contrast with a CV bundle 
adjustment, as best summed up in Snavely et al. (2008), where 
the functioning of Bundler is described: “most SfM methods 
operate by minimizing reprojection error and do not provide 
guarantees on metric accuracy”. 
This different point of view is motivated by the use of the final 
3D model. In a few words, the approaches are diverse because 
purposes are diverse.  
However, in close-range photogrammetry a growing number of 
CV methods is receiving great attention. For the image 

orientation phase, it is now available on the market the new 
PhotoModeler 2011 (EOS, Canada – www.photomodeler.com), 
that is the first (photogrammetric) commercial package capable 
of orienting target-less images in a fully automated way. The 
mathematical model used during bundle adjustment is a typical 
photogrammetric approach, but the operator for image matching 
(SIFT in this case) and the strategies for outlier rejection (based 
on the fundamental or essential matrices) come from CV. In 
addition, there are also other solutions for automatic orientation 
in close-range, where different techniques (e.g. Least Squares 
Matching - LSM) are integrated to improve precision and 
reliability (Barazzetti et al., 2010; Pierrot Deseilligny and Clery, 
2011; Roncella et al., 2011). 
This means that the combined use of techniques developed in 
both disciplines allows one to obtain accurate results in a fully 
automated way. This is now a reality for image orientation only, 
while with the work presented in this paper we would like to 
extend the concept also towards 3D modelling (for some 
specific categories of objects). 
In the field of close-range photogrammetry some (multi-image) 
commercial software for surface reconstruction are available 
today. Most of them are derived from Aerial Photogrammetry 
(e.g. CLORAMA - Remondino et al., 2008; LPS eATE - 
www.erdas.com). In their original implementations, these are 
able to extract a digital surface model (DSM), that is a 2.5D 
representation of the ground. On the other hand such 2.5D 
models are adequate for airborne mapping, but they feature 
evident limits in close-range surveys, because they cannot 
handle scenes at 360°. In addition, problems arise for DSM 
cells having multiple depth values. On the other hand, the 
accuracy obtainable with these methods is noteworthy, 
especially thanks to the use of sub-pixel area-based matching 
(ABM) procedures.  
As previously mentioned, we would like to present a 
methodology for surface measurement in the case of 3D objects. 
The aim is to obtain models useful for photogrammetric 
surveys. Architectural objects with sharp breaklines (e.g. 
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facades) are not considered here because their detailed 
modelling can best be accomplished with interactive 
measurements, through the identification of basic geometric 
shapes. We focus instead on ‘free-form’ objects, i.e. objects that 
can be modelled with meshes generated from point clouds.  
The proposed matching procedure is divided into two steps. 
First of all a seed model is created with a patch-based image 
matching technique and then ABM operators densify and refine 
the point cloud. Multiple images are simultaneously used to 
detect and remove outliers with the analysis of the light ray 
intersections in 3D space. As the core for global processing is 
the combined use of Multi-photo Geometrically Constrained 
Matching (MGCM) and other methods (that essentially allow 
3D processing), we called the procedure MGCM+. 
 
 
2. 3D RECONSTRUCTION PIPELINE WITH MGCM+ 

In this section a complete pipeline for the geometrical 
reconstruction of large-scale objects and scenes, using high 
resolution images in a multi-view stereo framework, is 
described. This method incorporates the high-end matching 
algorithms developed in Photogrammetry and CV. 
As can be seen in the flowchart in Figure 1, a block of suitable 
images (in terms of network geometry and image resolution) is 
needed. All images must be captured by using calibrated 
cameras in order to improve the precision of the final 3D 
measurements. It is out of the scope of this paper to illustrate 
the geometric characteristics that the image block should have 
(overlap, external or internal constraints, relative angles 
between images and the like). To obtain accurate and reliable 
surface measurements, each portion of the whole object must be 
covered by at least 3-4 images to exploit the potential of multi-
photo matching. In addition, the length of any baseline has to be 
selected according to a compromise between the precision in the 
depth direction (large baselines are better) and the limitation of 
image deformations required by ABM (short baselines and 
small view angles).  
Image orientation is the second prerequisite of MGCM+. It can 
be performed by manual or automatic procedures, but the latter 
have the advantage to generate a denser point cloud of tie 
points. This can be used to initialise MGCM+ with an 
approximate surface. On the contrary, if this initial model is not 
sufficiently dense, an alternative solution is applied to derive 
the seed model. This is mainly based on the algorithm proposed 
by Furukawa and Ponce (2010), as illustrated in subsection 2.1. 
The advantage of this method is its independence from the 
reference frame adopted and the capability of working without 
any initial rough model of the object. 
The MGCM algorithm combines (i) LSM based on intensity 
observations with (ii) collinearity conditions used as 
geometrical constraints for the determination of all object point 
coordinates. The introduction of the collinearity constraints and 
the opportunity to simultaneously match multiple scenes 
increase the matching reliability. 
MGCM is a matching technique presented by Grün (1985), with 
new improvements in Grün and Baltsavias (1988) and 
Baltsavias (1991). One could say that this technique is old. 
However, it is still the most precise method for image 
coordinate measurement and it is therefore appropriate for 
metric purposes. Here the theoretical background of MGCM is 
not explained in detail, but the main aspects of this technique 
are outlined to highlight its advantages with respect to other 
ABM methods. In addition, some limitations of the original 
formulation are pointed out. 

Let us consider a block of images depicting an object. One of 
them is selected as ‘master image’ according to a specific 
criterion (see subsect. 2.2). A set of points (xPk,yPk) found by 
means of an interest operator (or nodes of a regular grid) are 
used to extract a set of ‘templates’ i.e. square patches with a 
side of a few pixels. Each of them is reprojected on the other 
images of the block by exploiting a rough DSM of the object. A 
squared window (‘slave‘) is extracted around each reprojected 
point for each generic image i, obtaining a total number of n 
possible candidates. 
 

 
 

Figure 1. Workflow of MGCM+. 
 
 
The geometric deformation between the ‘template’ and each 
‘slave’ is modelled using an affine transformation, which locally 
approximates quite well perspective deformations. Then the 
‘template’ is compared with all corresponding ‘slaves’. The 
relationship describing the intensity values of each pixel in the 
‘template’ is given by the discrete function f(x,y), and the n 
‘slaves’ are represented by functions g1(x,y), …, gn(x,y). An 
intensity observation equation for each pixel of the ‘template’ 
and the corresponding pixel on the ‘slave’ i is written as 
follows: 
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where the unknown quantities are corrections to the parameters 
of the affine transformation dajki. The coefficient gi

0(x,y) is the 
observed value in the approximate position of the ‘slave’, while 
gxi and gyi are the partial derivatives of the function g(x,y). 
Numerically, the derivatives correspond to row and column 
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gradients. The function ei(x,y) gives the residual error with 
respect to the affine model. 
In addition, it is also possible to take into account some 
radiometric transformations (in many cases using a linear 
formulation) between ‘template’ and ‘slave’. However, in our 
case we usually disregard this radiometric compensation to limit 
the parameters and we prefer to operate with a preliminary 
radiometric equalization at local level.  
The MGCM combines the intensity observation equations (1) 
with the collinearity condition. In fact, for a pinhole (central 
perspective) image k the constraint between the generic object 
point  (Xp=[Xp Yp Zp]

T) and its corresponding 2D point (xpk,ypk) 
on the image k is given by the well-known collinearity 
equations: 

 

y
k

F

okp
T
k

okp
T
k

k
c

pk
y

x
k

F

okp
T
k

okp
T
k

k
c

pk
x

−=



 −




 −
−=

−=



 −




 −
−=

ˆ
XX

3
r

XX
2

r

ˆ
XX

3
r

XX
1
r

       (2) 

 
where ck is the principal distance, X0k is the vector expressing 
the perspective centre coordinates, Rk=[r1k r2k r3k]

T is the 
rotation matrix. Image coordinates (xpk,ypk) are computed with 
respect to the principal point. 
If both interior and exterior orientation (EO) parameters of each 
station are known, eq.s 2 can be rewritten as follows: 
 

 

00

00

=++∆

=++∆

pk
yy

k
F

pk
y

pk
xx

k
F

pk
x

      (3) 

 
The unknown parameters in eq.s 3 are shifts (∆xk, ∆yk) and 
object point coordinates (Xp). After their linearization, Eq.s 3 
become: 
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Shifts allow one to link both sets of eq.s 1 and 4, because 
∆xpk=da10 and ∆ypk=da20 for the same set of images and point P. 
Therefore, the resulting joint system can be solved using 
conventional Least Squares solution schemes (see Baltsavias, 
1991). 
MGCM presents some important advantages with respect to 
other traditional automatic matching techniques used in 
Photogrammetry  and CV. Compared to the normal LSM, where 
it is possible to match simultaneously only a couple of images, 
the MGCM obtains highly redundant results thanks to the 
collinearity constraint that permits combined multi-image 
matching. This reduces multiple solutions in case of repetitive 
textures and helps overcome possible occlusions thanks to the 
chance to view the object from multiple stations. In addition, 
3D object point coordinates are directly computed together with 
their theoretical accuracies. Recently, an extensions of the 
standard cross-correlation technique have been developed, 
obtaining the so called Geometrically Constrained Cross-
Correlation (GC3) (Zhang and Grün, 2006). This technique uses 
the collinearity condition in a way similar to MGCM. However, 
the perspective changes in close-range data can cause some 

troubles to the correlation strategy, while the affine 
transformation between the template and each slave increases 
the potential of MGCM algorithm in case of convergent images. 
The application of our method requires a decomposition of the  
object into 2.5D regions. For each of them a DSM or a TIN 
(triangulated irregular network) structure are interpolated 
starting from a set of seed points (subsect. 2.1). In particular, 
the choice of the subset of images for the measurement of each 
portion of the object is a crucial task. Inside this problem, a key 
aspect is which image could better serve as ‘template’ (subsect. 
2.2). All portions reconstructed in the local reference systems 
are finally joint together to derive a unique 3D model. It is 
important to mention that the recombination of the point clouds 
is rigorous as the rigid body transformations employed are 
known exactly. With this approach, even though the core 
matching strategy is still 2.5D, any 3D shape could be 
potentially reconstructed. 
 
2.1 Seed model generation 

As the measurement of the object surface with the MGCM 
algorithm needs an initial approximation, an intermediate step 
was added to obtain a preliminary seed model. In the case the 
EO parameters have been computed by using an automatic 
procedure, one could use all tie points matched with feature-
based matching (FBM) operators. However, in some cases their 
number is not sufficient (e.g. with texture-less objects) or their 
distribution in the images can be really variable, leaving some 
empty areas.  
The importance of a good seed model is remarkable not only for 
the geometric quality of the final product, but also in terms of 
CPU time as it can limit the search along the 3D light ray, 
reducing the number of trials during the translation of the 
correlation window. Lastly, tie-point coordinates are usually 
incorporated into a photogrammetric bundle adjustment. If the 
number of point correspondences used for image orientation 
becomes significant, there is a consequent increment of the 
computational cost. According to the authors’ experience some 
(few) close-range photogrammetric packages can process 
several thousand of image points, but when there are more than 
100,000 image coordinates, the computation of a rigorous 
bundle solution based on collinearity equations could become 
quite difficult, especially with standard PCs. 
For this reason a limited number of tie points with a good 
distribution and geometric multiplicity is still the best 
compromise during the orientation phase. The generation of a 
seed model is carried out in a new matching phase, where EO 
parameters are kept fixed in order to exploit the geometric 
constraint due to collinearity.  
As our method was developed for 3D objects, we exploit the 
patch-based matching (PMVS) approach proposed by 
Furukawa and Ponce (2010). Their procedure was incorporated 
into our matching pipeline in order to generate a low resolution 
initial model. This choice is motivated by the robustness of the 
method that combines multiple images during the dense 
matching step: if at least three images are processed 
simultaneously, blunders and spurious points can be removed 
by analysing the local data redundancy. In addition, the method 
is able to work with 3D objects and does not require any manual 
measurement. 
With these considerations in mind, the use of an intermediate 
procedure in the reconstruction pipeline could be seen as a 
drawback and a lack of originality. On the other hand, it is quite 
difficult to find (or develop) an open source implementation 
much better than Furukawa and Ponce’s code. In addition, as 
mentioned in the introduction, this work is partially based on 
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techniques developed by different authors. Nowadays, some of 
these have reached a significant level of maturity, while others 
still need improvements to become useful in practise. Our 
contribution tries to combine different procedures and this is 
not a trivial task. Moreover the processing pipeline should be 
able to exploit only the best properties of each technique. For 
instance, there are two fundamental drawbacks found with the 
implementation available: 
 

• it is difficult to manage several high resolution images 
used at their original size; and 

• the input data are expressed with the P-matrix camera 
model (Hartley and Zisserman, 2003), while a 
photogrammetric bundle adjustment provides EO 
parameters. 

 
The solution for the second point can be found in Barazzetti 
(2010), where an explicit relationship between both orientation 
datasets is illustrated for the case of distortion-free images. The 
first problem can be overcome by using compressed images 
with an opportune modification of the projection matrices. This 
solution is viable because we are interested in the creation of a 
seed model. In several scientific work images are subsampled 
during dense matching without introducing a coarse-to-fine 
approach that considers the original data. This is an 
approximation that degrades the quality of the final result, and it 
assumes an increasing importance due to the technological 
improvement of digital cameras, with geometric resolutions 
superior to 14 Mpix even for low-cost compact sensors. Our 
solution to this problem is described in the next section, where 
images are always used at their original size without any loss of 
precision. 
 
2.2 Approximate geometrical model handling 

An important limit in the MGCM algorithm is the need of an 
approximate position of the object points, along with a 
preliminary location of the homologous point positions in the 
slave images. To overcome this problem a seed model of the 
object is derived by using the method described in the previous 
section. In the current implementation of MGCM+ the object 
surface is approximated by using a DSM oriented with respect 
to a reference plane. In the case of complex 3D objects which 
do not feature a 2.5D geometry (likewise the topographic 
surface in mapping projects), the whole patch-based point cloud 
is segmented in approximated 2.5D regions. As things stand 
now, the segmentation of the point cloud is performed in a 
manual way (this solution is fast and simple for many objects). 
Each model is processed in a separate way and the final point 
clouds are then connected together. This is also good for 
parallel computing. In any case, the use of a more flexible 3D 
data structure like a TIN will be added soon, because it is the 
best solution for complex objects. 
A set of points is then defined in the 2D regular grid of each 
DSM. The cell size can be set by the user according to the 
resolution of the images. The approximate elevation of each 
point with respect to the reference plane is selected by using 
interpolation techniques. In a second stage, this elevation will 
be estimated by the MGCM L.S. solution. A back-projection of 
each grid point on all the available views is then carried out to 
select the ‘master’ and ‘slaves’ images and it also provides the 
set of initial positions of homologous points. 
However, although the DSM used can be a rough 
approximation of the real surface, the homologous points 
defined by the back-projection principle can be very far from 
their true positions. For this reason, additional intermediate 

points are set up on the projective ray connecting the DSM cell 
and the image point in the ‘master’ image. The number of 
additional points along the projective ray and their inter-
distances are both parameters estimable on the basis of the 
approximated surface model quality. For each point defined 
along the projective ray the ‘slave’ image patches  are derived 
using the collinearity principle. According to this approach, a 
set of approximated candidate positions for the L.S. solution of 
the system is found. At this stage, both sets of eq.s of kind (1) 
and (4) are set up in order to compute the corrections for image 
and object point positions. The partial variance factors σ0i

2 for 
each individual patch are also estimated. The process is iterated 
until the corrections are negligible. The last problem concerns 
the choice, among all candidate solutions computed along the 
projective ray, of the correct matching. In particular, it is 
considered as correct match the one minimizing the mean 
variance factor. 
 
2.3 Selection of images and LSM approximate parameters 

As remarked above, one of the weak points in the original 
MGCM formulation is the selection of ‘master’ and ‘slave’ 
images. Generally the problem is solved in this way: given the 
set of images to be processed, an image (usually the central one) 
is manually picked up as ‘master’. Consequently, all the other 
images will serve as ‘slaves’. The manual choice of a fixed 
‘master’, obviously, is not the best criterion. This is mainly due 
to a couple of reasons: (i) if an object, approximated with a 
2.5D model, is not entirely visible in a single image, multiple 
processing with different ‘master’ images is needed; (ii) in 
terrestrial surveys there are some lateral views of an object, 
capturing areas occluded in the central image. They give an 
important contribution to the final reconstruction of the object. 
This contribution would be completely neglected by using a 
‘fixed master’ approach. 
Nevertheless, the alternate use of all photos as ‘template’ is not 
a good solution because of the huge CPU time needed to 
complete global processing. Finally, in close-range applications 
the perspective deformations between different images can be 
so large that the affine model between ‘master’ and ‘slave’ 
images could become inadequate. 
For all these reasons an optimization in the image selection 
phase is needed. To start with, a selection based on the 
information derived from the approximated model is 
accomplished. For a specified point in the DSM, all images in 
which the point is visible are considered with a simple back-
projection. The selection of the ‘master’ is then carried out 
inside this set. The surface normal direction in correspondence 
to the considered object point is computed, then this direction is 
compared to all photo normals where the point is visible. The 
image whose  normal is closer to the surface normal direction is 
chosen as ‘master’. With this strategy we can easily handle also 
2.5D objects that are not completely visible in a single image, 
without requiring the intermediate interaction of the user.  
An optimization is also mandatory for what concerns the 
selection of ‘slaves’ images. In fact, in many cases the 
perspective deformations can become a problem for LSM. For 
this reason we limit the number of possible ‘slaves’ only to 
those where LSM can provide good results. Also in this case the 
choice is operated using the approximated surface model. For 
each point in the original model we consider the shape of the 
DSM cell containing the same points in different images. If a 
large geometrical deformation occurs, the shape of the DSM 
cell in the images presents significant changes. Therefore we 
back-project the DSM cell containing the object points in all 
images and we compare the cell changes between the defined 
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‘master’ image and the other ‘slave’ candidates. In particular we 
consider two parameters: ‘cell area’ and ‘cell shape’. If the area 
of the back-projected DSM cell in a ‘slave’ is less than half of 
the cell area in the ‘master’, the variation between images, 
owing to both perspective changes or scale variations, is 
considered too large and the point is not processed. However, in 
some cases even if the area does not vary too much from two 
images a significant perspective variation could occur. In this 
case the “shape” of the cell changes in a significant way. To 
recognize this situation we consider the inclination of the back-
projected DSM cell on the images. If angular variations 
between the ‘template’ and a candidate ‘slave’ are superior to 
40% the image is rejected.  
Finally, it is important to find a set of approximate parameters 
for the affine transformation between ‘template’ and ‘slaves’. 
After selecting the ‘slave’ images as described above, the DSM 
cell is known in different images. This information can be used 
to compute initial values for rotation, affinity and scale 
parameters for the LSM, simply using an affine transformation 
between the back-projected DSM cell in the ‘master’ and 
‘slave’ images. As shown in Balsavias, (1991) the significance 
of the shaping parameters in the affine transformation can be 
evaluated with their correlations. In fact, high correlations 
among the parameters of the affine model and the others might 
indicate their non-determinability. In our case we are 
particularly interested in evaluating the significance of shears 
and scales as approximate values. The correlations between 
similar shaping parameters (scales - shears) and the correlations 
between shape parameters in the same direction have an 
essential importance. At this stage two approaches can be used 
to evaluate these correlations: a deterministic approach and a 
statistical one. 
In the first case all parameters can be considered as highly 
correlated if their correlation coefficients exceed a fixed 
threshold. This means that one of the two correlated parameters 
can be assumed as not significant and the one with the larger 
variance should be excluded.  
In many cases the use of a fixed threshold for the definition of 
high correlations can be a real challenge and could lead to a 
poor solution. Here, a statistical approach becomes more 
suitable. In particular, it is possible to assume that the 
parameters have a multivariate normal density distribution. 
Under this hypothesis, and after fixing a significance level for 
the test, the correlation of the shaping parameters can be 
verified using Hotelling’s test (Baltsavias, 1991). If the test 
fails, there are correlations, otherwise all parameters can be 
considered as statistically uncorrelated. A further investigation 
should be carried out to determine which coefficients are 
effectively correlated. This check can be done with a test that 
imposes the null hypothesis ρ = 0.  
As can be noticed, in the statistical approach no threshold needs 
to be set at the beginning. It is necessary to fix only the 
significance level for the test. Therefore, this is the default 
procedure in our method. 
 
 

3. EXPERIMENTS 

Shown in figures 2a-b-c are three close-range objects modelled 
from multiple convergent images (12 Mpix) by using the 
proposed method. The first example (a) is a 3D object that was 
divided into three portions to fit the 2.5D requisite. The 
approximate DSM (its first region is shown with a colour-map 
representation) was the starting point to extract 1.3 million 
points roughly. No blunders were found at the end of matching 
phase and a final mesh was created after the combination of all 

point clouds. As previously mentioned, the alignment of partial 
reconstructions does not introduce new errors, as each rigid-
body transformation is known. 
In this case a rigorous accuracy analysis was impossible, as a 
reference dataset was not available. However, this method 
allows a statistical evaluation with the covariance matrix, 
offering the standard deviations of all 3D points.   
The second dataset (b) can be clearly modelled without any 
partitioning. The point cloud obtained from 5 convergent 
images is made up of 0.5 million points. Blunders were 
correctly removed by MGCM+.  For this dataset we carried out 
a comparison between another point cloud generated using 
Leica Photogrammetry Suite (LPS) - eATE. This software was 
developed for aerial mapping purposes and can be considered a 
well-assessed tool for object reconstruction, based on semi-
global matching (Hirschmüller, 2008). Both meshes were 
aligned using the ICP registration algorithm implemented in 
Geomagic Studio. The range of the error bar is ±13 mm, while 
the standard deviation of discrepancies is ±0.7 mm. The object 
is 0.9 m wide. 
The example in Figure 2c comprehends 7 images capturing a 
bas-relief 1 m wide. Also in this case the object can be easily 
modelled using a single partitioning, offering the opportunity 
for a new comparison with LPS-eATE. This gave a discrepancy 
of about 0.4 mm, while the error bar ranges from [-13; +13] 
mm. 
Some other datasets for multi-view stereo evaluation are 
available on the Internet (provided by Strecha). They are quite 
challenging because of a repetitive texture and several 
breaklines. These are typical objects for which usually a manual 
reconstruction gives better results. The façade of the building in 
Figure 2d was modelled using 25 images, that were oriented in 
order to obtain photogrammetric EO parameters (although the 
camera-matrices are available). The output of the multi-image 
matching phase with an incorporated block sub-division are 2.7 
million points. For the second dataset (Figure 2e), 11 images 
were employed to obtain 1.2 million points that were 
interpolated to create a mesh. A scale factor was then fixed to 
remove this ambiguity, and the model was aligned with the laser 
mesh with ICP obtaining a discrepancy (in terms of standard 
deviation) of about ±12 mm. In any case, during this 
comparison we included all areas that were not visible in the 
images, where there are evident gaps in the photogrammetric 
model. Here, the distances between the model (that are not 
errors but only empty areas) are superior to 10 cm, and caused a 
global worsening. The analysis was repeated only for small 
portions of the model in order to avoid this problem, estimating 
a std.dev. of about ±5.6 mm. The obtained value is comparable 
to the ground sample distance (GSD) of the images and the 
sampling step during MGCM+. 
Figure 2f shows a 360° reconstruction from a set of 32 images 
around a statue, confirming the suitability of the method for 3D 
objects. The small objects (g) is instead made of marble. 
Although it is well-known that this material is prone to produce 
noisy results, the visual reconstruction seems good. 
Figure 2h shows a geotechnical case, where a rock face was 
surveyed at different epochs in order to monitor its stability and 
discover potential risks (e.g. rockfalls). To accomplish this task 
the metric content of the model is essential. In addition, as data 
must be compared to obtain a multi-temporal analysis, images 
must be registered to the same reference system with some 
GCPs incorporated into the bundle adjustment. The comparison 
with a laser model, after removing disturbing elements such as 
vegetation, revealed a discrepancy of about ±5 mm, i.e. the 
nominal precision of the laser scanner used.     
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Figure 2. Some results obtained with MPGC+ for the reconstruction of 2.5D and 3D objects. 
 

 
4. CONCLUSIONS 

The paper presented an automated pipeline for multi-view 
reconstruction of close-range objects. The final aim was to 
setup a software able to model free-form objects from images 
featuring good characteristics in terms of resolution, overlap 
and network geometry. The reconstruction process is 
automated, starting from image orientation phase up to the 
generation of a dense point cloud. Partitioning of the object is 
the only manual task, although an automated solution is under 
development. Here, we are not interested in the final step, i.e. 
mesh generation, as several commercial and open source 
solutions are available to accomplish this task. 
An important aspect of this work is the joint use of CV and 
Photogrammetry techniques. In particular, we think that MGCM 
is a powerful matching method, as it is very robust, precise and 
invariant with respect to affine deformations (after setting good 
initial values). On the contrary, other CV methods can automate 
the typical photogrammetric workflow. In a few words, the 
advantages of both disciplines are combined, while 
shortcomings are reduced.  
There are some limits in our approach, like the use of a 2.5D 
DSM as initial model. A solution based on a 3D TIN as seed 
model is under investigation. Another limit is the manual 
segmentation of complex objects. In our future work we will try 
to eliminate this step or, at least, to introduce an automatic 
segmentation procedure. 
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